19 research outputs found

    Characterization of Halorubrum sfaxense sp. nov., a New Halophilic Archaeon Isolated from the Solar Saltern of Sfax in Tunisia

    Get PDF
    An extremely halophilic archaeon, strain ETD6, was isolated from a marine solar saltern in Sfax, Tunisia. Analysis of the 16S rRNA gene sequence showed that the isolate was phylogenetically related to species of the genus Halorubrum among the family Halobacteriaceae, with a close relationship to Hrr. xinjiangense (99.77% of identity). However, value for DNA-DNA hybridization between strain ETD6 and Hrr.xinjiangense were about 24.5%. The G+C content of the genomic DNA was 65.1 mol% (T(m)). Strain ETD6 grew in 15–35% (w/v) NaCl. The temperature and pH ranges for growth were 20–55°C and 6–9, respectively. Optimal growth occurred at 25% NaCl, 37°C, and pH 7.4. The results of the DNA hybridization against Hrr. xinjiangense and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain ETD6 from other Hrr. species. Therefore, strain ETD6 represents a novel species of the genus Halorubrum, for which the name Hrr. sfaxense sp. nov. is proposed. The Genbank EMBL-EBI accession number is GU724599

    Survival in water of Campylobacter jejuni strains isolated from the slaughterhouse

    Get PDF
    Campylobacter jejuni cause gastroenteritis in humans. The main transmission vector is the consumption or handling of contaminated chicken meat, since chicken can be colonized asymptomatically by C. jejuni. However, water has been implicated as the transmission vector in a few outbreaks. One possibility is the contamination of water effluent by C. jejuni originating from chicken farm. The ability of C. jejuni to be transmitted by water would be closely associated to its ability to survive in water. Therefore, in this study, we have evaluated the ability of reference strains and chickenisolated strains to survive in water. Defined water media were used, since the composition of tap water is variable. We showed that some isolates survive better than others in defined freshwater (Fraquil) and that the survival was affected by temperature and the concentration of NaCl. By comparing the ability of C. jejuni to survive in water with other phenotypic properties previously tested, we showed that the ability to survive in water was negatively correlated with autoagglutination. Our data showed that not all chicken isolates have the same ability to survive in water, which is probably due to difference in genetic content

    Characterization of heterotrophic prokaryote subgroups in the Sfax coastal solar salterns by combining flow cytometry cell sorting and phylogenetic analysis

    Get PDF
    Here, we combined flow cytometry (FCM) and phylogenetic analyses after cell sorting to characterize the dominant groups of the prokaryotic assemblages inhabiting two ponds of increasing salinity: a crystallizer pond (TS) with a salinity of 390 g/L, and the non-crystallizer pond (M1) with a salinity of 200 g/L retrieved from the solar saltern of Sfax in Tunisia. As expected, FCM analysis enabled the resolution of high nucleic acid content (HNA) and low nucleic acid content (LNA) prokaryotes. Next, we performed a taxonomic analysis of the bacterial and archaeal communities comprising the two most populated clusters by phylogenetic analyses of 16S rRNA gene clone library. We show for the first time that the presence of HNA and LNA content cells could also be extended to the archaeal populations. Archaea were detected in all M1 and TS samples, whereas representatives of Bacteria were detected only in LNA for M1 and HNA for TS. Although most of the archaeal sequences remained undetermined, other clones were most frequently affiliated to Haloquadratum and Halorubrum. In contrast, most bacterial clones belonged to the Alphaproteobacteria class (Phyllobacterium genus) in M1 samples and to the Bacteroidetes phylum (Sphingobacteria and Salinibacter genus) in TS samples

    Can cyanobacterial diversity in the source predict the diversity in sludge and the risk of toxin release in a drinking water treatment plant?

    Get PDF
    ABSTRACT: Conventional processes (coagulation, flocculation, sedimentation, and filtration) are widely used in drinking water treatment plants and are considered a good treatment strategy to eliminate cyanobacterial cells and cell-bound cyanotoxins. The diversity of cyanobacteria was investigated using taxonomic cell counts and shotgun metagenomics over two seasons in a drinking water treat- ment plant before, during, and after the bloom. Changes in the community structure over time at the phylum, genus, and species levels were monitored in samples retrieved from raw water (RW), sludge in the holding tank (ST), and sludge supernatant (SST). Aphanothece clathrata brevis, Microcystis aeruginosa, Dolichospermum spiroides, and Chroococcus minimus were predominant species detected in RW by taxonomic cell counts. Shotgun metagenomics revealed that Proteobacteria was the pre- dominant phylum in RW before and after the cyanobacterial bloom. Taxonomic cell counts and shotgun metagenomic showed that the Dolichospermum bloom occurred inside the plant. Cyanobac- teria and Bacteroidetes were the major bacterial phyla during the bloom. Shotgun metagenomics also showed that Synechococcus, Microcystis, and Dolichospermum were the predominant detected cyanobacterial genera in the samples. Conventional treatment removed more than 92% of cyanobac- terial cells but led to cell accumulation in the sludge up to 31 times more than in the RW influx. Coagulation/sedimentation selectively removed more than 96% of Microcystis and Dolichospermum. Cyanobacterial community in the sludge varied from raw water to sludge during sludge storage (1–13 days). This variation was due to the selective removal of coagulation/sedimentation as well as the accumulation of captured cells over the period of storage time. However, the prediction of the cyanobacterial community composition in the SST remained a challenge. Among nutrient parameters, orthophosphate availability was related to community profile in RW samples, whereas communities in ST were influenced by total nitrogen, Kjeldahl nitrogen (N- Kjeldahl), total and particulate phos- phorous, and total organic carbon (TOC). No trend was observed on the impact of nutrients on SST communities. This study profiled new health-related, environmental, and technical challenges for the production of drinking water due to the complex fate of cyanobacteria in cyanobacteria-laden sludge and supernatant

    Additional file 1: of Transcriptomic changes of Legionella pneumophila in water

    No full text
    Lp genes that are significantly up- or down-regulated in water. (XLSX 366 kb

    The Effects of Ferric Sulfate (Fe2(SO4)3) on the Removal of Cyanobacteria and Cyanotoxins: A Mesocosm Experiment

    No full text
    Cyanobacterial blooms are a global concern. Chemical coagulants are used in water treatment to remove contaminants from the water column and could potentially be used in lakes and reservoirs. The aims of this study was to: 1) assess the efficiency of ferric sulfate (Fe2(SO4)3) coagulant in removing harmful cyanobacterial cells from lake water with cyanobacterial blooms on a short time scale, 2) determine whether some species of cyanobacteria can be selectively removed, and 3) determine the differential impact of coagulants on intra- and extra-cellular toxins. Our main results are: (i) more than 96% and 51% of total cyanobacterial cells were removed in mesocosms with applied doses of 35 mgFe/L and 20 mgFe/L, respectively. Significant differences in removing total cyanobacterial cells and several dominant cyanobacteria species were observed between the two applied doses; (ii) twelve microcystins, anatotoxin-a (ANA-a), cylindrospermopsin (CYN), anabaenopeptin A (APA) and anabaenopeptin B (APB) were identified. Ferric sulfate effectively removed the total intracellular microcystins (greater than 97% for both applied doses). Significant removal of extracellular toxins was not observed after coagulation with both doses. Indeed, the occasional increase in extracellular toxin concentration may be related to cells lysis during the coagulation process. No significant differential impact of dosages on intra- and extra-cellular toxin removal was observed which could be relevant to source water applications where optimal dosing is difficult to achieve

    The Effects of Ferric Sulfate (Fe2(SO4)3) on the Removal of Cyanobacteria and Cyanotoxins: A Mesocosm Experiment

    No full text
    Cyanobacterial blooms are a global concern. Chemical coagulants are used in water treatment to remove contaminants from the water column and could potentially be used in lakes and reservoirs. The aims of this study was to: 1) assess the efficiency of ferric sulfate (Fe2(SO4)3) coagulant in removing harmful cyanobacterial cells from lake water with cyanobacterial blooms on a short time scale, 2) determine whether some species of cyanobacteria can be selectively removed, and 3) determine the differential impact of coagulants on intra- and extra-cellular toxins. Our main results are: (i) more than 96% and 51% of total cyanobacterial cells were removed in mesocosms with applied doses of 35 mgFe/L and 20 mgFe/L, respectively. Significant differences in removing total cyanobacterial cells and several dominant cyanobacteria species were observed between the two applied doses; (ii) twelve microcystins, anatotoxin-a (ANA-a), cylindrospermopsin (CYN), anabaenopeptin A (APA) and anabaenopeptin B (APB) were identified. Ferric sulfate effectively removed the total intracellular microcystins (greater than 97% for both applied doses). Significant removal of extracellular toxins was not observed after coagulation with both doses. Indeed, the occasional increase in extracellular toxin concentration may be related to cells lysis during the coagulation process. No significant differential impact of dosages on intra- and extra-cellular toxin removal was observed which could be relevant to source water applications where optimal dosing is difficult to achieve

    Phenotypic and Transcriptomic Responses of Campylobacter jejuni Suspended in an Artificial Freshwater Medium

    No full text
    Campylobacter jejuni is the leading cause of campylobacteriosis in the developed world. Although most cases are caused by consumption of contaminated meat, a significant proportion is linked to ingestion of contaminated water. The differences between C. jejuni strains originating from food products and those isolated from water are poorly understood. Working under the hypothesis that water-borne C. jejuni strains are better equipped at surviving the nutrient-poor aquatic environment than food-borne strains, the present study aims to characterize these differences using outbreak strains 81116 and 81-176. Strain 81116 caused a campylobacteriosis outbreak linked to consumption of water, while strain 81-176 was linked to consumption of raw milk. CFU counts and viability assays showed that 81116 survives better than 81-176 at 4°C in a defined freshwater medium (Fraquil). Moreover, 81116 was significantly more resistant to oxidative stress and bile salt than strain 81-176 in Fraquil. To better understand the genetic response of 81116 to water, a transcriptomic profiling study was undertaken using microarrays. Compared to rich broth, strain 81116 represses genes involved in amino acid uptake and metabolism, as well as genes involved in costly biosynthetic processes such as replication, translation, flagellum synthesis and virulence in response to Fraquil. In accordance with the observed increase in stress resistance in Fraquil, 81116 induces genes involved in resistance to oxidative stress and bile salt. Interestingly, genes responsible for cell wall synthesis were also induced upon Fraquil exposure. Finally, twelve unique genes were expressed in Fraquil; however, analysis of their distribution in animal and water isolates showed that they are not uniquely and ubiquitously present in water isolates, and thus, unlikely to play a major role in adaptation to water. Our results show that some C. jejuni strains are more resilient than others, thereby challenging current water management practices. The response of 81116 to Fraquil serves as a starting point to understand the adaptation of C. jejuni to water and its subsequent transmission
    corecore